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ABSTRACT: The objective of the present work is to de-
velop a fractional model which describe in a precisely
manner the real and imaginary parts of the complex mag-
netic susceptibility for polymer-magnetic nanocomposites
dispersed into a liquid media, using differential and/or in-
tegral operators of fractional order (fractional calculus).
The theoretical results show that the shape of the curves
of both real and imaginary parts is depending of the frac-
tional order of this new model named Fractional Magnetic

Model (FMM). Moreover, the comparison between theoret-
ical and experimental results show that the FMM describe
quite well the complex susceptibility response of the poly-
meric systems containing magnetic nanoparticles at low
frequencies (from 0.1 to 105 Hz). VVC 2009 Wiley Periodicals,
Inc. J Appl Polym Sci 112: 1943–1948, 2009

Key words: fractional calculus; complex susceptibility;
magnetic nanoparticles, polymeric systems

INTRODUCTION

The magnetic nanoparticles have specific properties
different from massive magnetic material.1 Commonly
magnetic nanoparticles, suspended in liquid organic
mediums, are used in the development and design of
apparatus and devices.2–4 However, these colloidal
suspensions are not stable, because there is coagulation
of magnetic nanoparticles and the magnetic behavior
could be modified.5 To avoid this particular phenom-
enon, an alternative is to stabilize magnetic nanopar-
ticles in a polymer matrix. These nanocomposites
materials are composed by polymer filled with mag-
netic nanoparticles, which has many advantages com-
pared with those systems of magnetic nanoparticles
dispersed in organic media. For example, in the case
of magnetite nanoparticles firmly fixed in a polysty-
rene matrix, there is no coagulation of particles.6 The
polymer matrix also acts to stabilize the magnetic
nanoparticles, preventing their oxidation and stabiliz-

ing other properties, such as superparamagnetic relax-
ation response, over long periods7; these nanomaterials
are so-called polymer-magnetic nanocomposite.8,9

From this polymer-magnetic nanocomposite, it is pos-
sible to obtain a ferrofluid when magnetic nanopar-
ticles fixed in a matrix polymer are dispersed into
liquid media.10 Accordingly, these ferrofluids are
widely used in technical applications that are either
mechanical (e.g., seals, bearings, and dampers) or elec-
tromechanical (e.g., loudspeakers, stepper motors, and
sensors) in nature. Besides those technical applications,
ferrofluids are gaining increasing interest for biological
and medical applications (e.g., high-gradient magnetic
separation techniques, magnetic drug targeting, mag-
netic hyperthermia, and contrast agents for magnetic
resonance imaging).7–13

Nevertheless, all of these applications require a
complete understanding of the magnetic relaxation
phenomena of the mentioned composite materials.
The complex magnetic susceptibility, v� ¼ v0 � iv00,
as a function of the frequency of an applied ac mag-
netic field is a powerful tool for the characterization
of the dynamic properties of polymer-magnetic
nanocomposites dispersed into a liquid media.
Two typical magnetic relaxations are observed in

polymer-magnetic composites. At high frequencies (f
> 1GHz) it is observed the Néel-relaxation which is
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characterized by the internal reorientation (inside
nanoparticles) of the magnetization against an inter-
nal energy barrier. And on the other hand, at low
frequencies (f < 1GHz) is observed the ‘‘Brownian
relaxation’’ due to the rotational diffusion of the
nanoparticles in the liquid.13,14 In polymer-magnetic
nanocomposite dispersed into a liquid media, the
rotational diffusion of the fixed magnetic nanopar-
ticles induces the motion of the polymeric matrix.10

From experimental measurements of the v� we
can study these phenomena, because we can sepa-
rate into its real and imaginary components. The
real part, v0, represents the component that is in
phase with the applied ac magnetic field, whereas
the imaginary part, v00, is proportional to the p/2 out
of phase or quadrature component of the magnetiza-
tion. The imaginary component is related to the
energy dissipated by the sample from the ac field,
whereas real component is associated to partial stor-
ing energy. For the interpretation of the experimen-
tal spectra of both v0 and v00 is necessary to use a
mathematical model because the dynamic magnetic
properties for these materials are very complex,
which makes them very difficult to handle analyti-
cally. It is possible to find models in the literature
which describe v0 and v00, but most of them take into
count only one relaxation time, s. In this sense, the
use of differential and integral operators of fractional
order (fractional calculus) is an alternative.

The goal of this work is the application of frac-
tional calculus to model the complex magnetic sus-
ceptibility. Using this new fractional model, we can
associate the molecular mobility to each relaxation
phenomenon. It is important to remark that in this
work we are interested only to modeling the low fre-
quencies relaxation phenomenon, because this mag-
netic relaxation is associated to the mobility of the
magnetic nanoparticles fixed in polymer matrix into
a liquid media.

FRACTIONAL CALCULUS AND THE NEW
FRACTIONAL RESISTOR-INDUCTOR ELEMENT

Fractional calculus is the branch of mathematics that
deals with the generalization of integrals and deriva-
tives of all real orders.15 In this work, for the modeling
of the ac magnetization response, fractional calculus is
used to obtain a new magnetic-fractional element
whose perform an intermediary behavior between a
magnetic-inductor and an electrical resistance. We
have named to this new magnetic fractional element a
fractional resistor-inductor or FRI. The constitutive
equation, shown by eq. (1), of the FRI is based in a dif-
ferential operator of fractional order a between 0 and
1. From the FRI we obtain a resistance behavior if a ¼
0, and a magnetic-inductor behavior if a ¼ 1 (see

Fig. 1). Therefore for 0 < a < 1 an intermediary behav-
ior between a resistance and an inductance is
obtained.

V tð Þ ¼ R
L

R

� �adaI tð Þ
dta

¼ RsaDa
t I tð Þ with 0 � a � 1 (1)

In eq. (1), V is the circuit applied voltage, R and L
are the electric resistance and inductance magni-
tudes, respectively, and s ¼ L/R is the characteristic
response time, called relaxation time, which can be
associated with the time required to the motion for a
complete reorientation of a given particle (with a
dipolar magnetic moment) to a new equilibrium
state. Finally, Da

t I(t) is the fractional derivate of the
ath order of the electrical current in the FRI with
respect to time,16,17 which can be defined by the Rie-
mann-Liouville derivative:

Da
t I tð Þ ¼ D

Z t

0

1

C 1� að Þ
I yð Þds
t� yð Þa with a 2 ð0; 1Þ (2)

where C is the Gamma function:

CðxÞ ¼
Z 1

0

euux�1
� �

du with x > 0 (3)

and ‘‘y’’ is a mathematical variable used in Riemann-
Lioville derivative. It is important to mention that
eq. (2) is obtained from a Riemann-Lioville integral
which is represented as a fractional integral defined
between 0 and t:

D�a
t I tð Þ ¼ D

Z t

0

1

C að Þ
I yð Þds
t� yð Þ1�a

with a 2 ð0;1Þ (4)

Figure 1 The new fractional resistor-inductor element
(FRI), with 0 < a < 1.
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A fractional derivate [eq. (2)] represents a convolution
integral in which the function I(t) is convolved with
the impulse-response function of ath order. In conse-
quence, eqs. (2) and (4) describe the state of the under-
lying system influenced by all states at early times. On
the other hand, from the physical point of view, the
fractional order of a fractional integral [eq. (4)] can be
considered as an indication of the remaining energy in
the system, given from an applied magnetic field sig-
nal. In similar manner, the fractional order of a deri-
vate reflects the rate at which a portion of the energy
has been lost in the system.

Several works have used empirical models to
describe complex magnetic susceptibility response of
magnetic materials.18–21 However, these classical
models are characterized by only one relaxation
time, s, and hence explain the experimental results
only as a first approximation. In the next section we
describe the application of the FRI element for the
development of a fractional magnetic model (FMM)
to describe the complex magnetic susceptibility
response at low frequencies for systems containing
magnetic nanoparticles. By introducing fractional
calculus tool into the FRI, it is possible take into
account a distribution of relaxation times, associated
with the system magnetic response. This approach
has been successfully used over the past few years
in the case of the dielectric manifestation of the vis-
coelasticity of polymer-dielectric materials.16,17

THE FRACTIONAL MAGNETIC MODEL

The Figure 2 shows the proposed FMM and the con-
stitutive equations of their electric elements. The elec-
trical behavior of the FMM it is described by eq. (5):

Da
tV tð Þ þ s1�aDa

tV tð Þ � L0 � L1ð ÞDaþ1
t I tð Þ

� L1Daþ1
t I tð Þ � L1saþ1D2

t I tð Þ ¼ 0 ð5Þ
Applying the Fourier transform to eq. (5), the

complex inductance, L�, of the circuit is calculated:

L� ¼ L1 þ L0 � L1ð Þ ixsð Þa
ixsð Þa þ ixsð Þ (6)

From the inductance-magnetic susceptibility relation,
L ¼ k(1 þ v), where k is a constant which involves
geometrical variables of the inductance, the complex
susceptibility equation of the FMM is obtained:

v� ¼ v1 þ v0 � v1ð Þ ixsð Þa
ixsð Þaþ ixsð Þ (7)

where v0 and v1 represents the susceptibility at low
and high frequencies, respectively. From this equa-
tion the mathematical expressions of v0 and v00 are
obtained; v0 is calculated as:

v0 ¼ v1 þ
v0 � v1ð Þ xsð Þ2aþ xsð Þ1þasin ap

2

� �h i
xsð Þ2aþ2 xsð Þ1þasin ap

2

� �þ xsð Þ2 (8)

and v00 is defined as:

v00 ¼ v0 � v1ð Þ xsð Þ1þacos ap
2

� �
xsð Þ2aþ2 xsð Þ1þasin ap

2

� �þ xsð Þ2 (9)

TESTING THE RESPONSE OF THE FMM

To verify the magnetic behavior of the FMM defined
by eqs. (8) and (9), we proceeded to vary systemati-
cally the fractional order or the parameter a of the
FMM. This parameter can take values only between
0 and 1. The Figure 3 shows the isothermal predic-
tions of the real part, whereas Figure 4 display the
predictions for the imaginary part of v� at different
values of a, having v0 ¼ 1.0 and v1 ¼ 0.1. In both

Figure 2 The proposed fractional magnetic model (FMM).

Figure 3 The frequency dependence of the real part of
complex susceptibility predicted by the FMM, for the indi-
cated values of a.
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cases, the shape of curves is depending of the value
of parameter a.

For values of a < 1, the curves of the real part
show that at low frequencies and high frequencies v0

is not dependent of the frequency. Instead, at low
frequencies v0 � v0, and at high frequencies v0 � v1
(see Fig. 3). However, at intermediary frequencies v0

is depending of the frequency, and there is a notice-
able decrease of the real part as frequency increases;
this behavior corresponds to a maximum at the
imaginary part (see Fig. 4), and is related to a typical
relaxation phenomenon.

By another hand, as Figure 3 depicts, when a ¼ 1
there is not energy dissipation, whereas when a ¼ 0
we obtain the typical curves analogous to Debye
model.4 Moreover, for values of 0 < a < 1, but close
to 0, the decrement of the curves of the real part dis-
play a step-like feature, whereas for values of pa-
rameter a in the same range but close to 1 the step-
like feature is stretched. As a consequence of this
last behavior, the amplitude of the peak at the imag-
inary part curves decreases (see Fig. 4). It is well
known that for viscoelastic systems a decrease in the
amplitude of the peak at the imaginary curve is
related to a decrease of the energy dissipated for the
system.

In addition, an important tool to estimate the mag-
nitude of the fractional exponent a from experimen-
tal results is the Cole-Cole diagram. The Figure 5
shows the Cole-Cole diagrams obtained from FMM
for the same values of the parameter a used at Fig-
ures 3 and 4, and also it is showed how the frac-
tional parameter a can be estimated from a Cole-
Cole diagram; for a ¼ 0, Cole-Cole diagram displays
a semi-circle whose radius is equal to (v0 � v1)/2. It
is important to remark here that the fractional expo-

nent a, could be considered as a relative measure of
partial stored energy by the system due to the
applied magnetic field. Moreover, the exponent a
could be related to a distribution function of relaxa-
tion times,3,4 as it has been reported by Alcoutlabi et
al. for polymer systems.22

COMPARISON BETWEEN THEORETICAL AND
EXPERIMENTAL RESULTS

The Figure 6 shows the comparison between the
theoretical curves of the real and imaginary parts,
performed by the FMM, and those experimental
curves reported for a system of polymer-magnetic

Figure 5 Cole-Cole diagrams obtained from the FMM,
for the indicated values of a.

Figure 6 Comparison between the theoretical curves pre-
dicted by the FMM (solid line) and the experimental data
of the real (solid circles) and imaginary (open circles) parts
of the complex susceptibility taken from a colloid disper-
sion of polymer-magnetic microspheres.

Figure 4 The frequency dependence of the imaginary
part of complex susceptibility predicted by the FMM, for
the indicated values of a.
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microspheres of latex filled with cobalt-ferrite nano-
particles;10 the microspheres are dispersed into a
liquid media. As this figure displays, the FMM
describe quite well the experimental results of both
real and imaginary parts of a colloidal dispersion of
polymer-magnetic microspheres. Additionally, Fig-
ure 7 displays the theoretical Cole-Cole diagram and
those experimental points extracted from the behav-
ior of the real and imaginary part of the polymer-
magnetic microspheres systems. Here it is observed
that theoretical results are also in good agreement
with the experimental data, confirming that expo-
nent a was correctly estimated. The values of the pa-
rameters introduced to the FMM are given in the
Table I.

The performance of the FMM was also evaluated
comparing its theoretical predictions with the
reported experimental results of a ferrofluid com-
posed by stabilized magnetite nanoparticles dis-
persed into an aqueous dissolution.4 As Figure 8
depicts, the FMM also describes in a precisely man-
ner the behavior of the rotational motion of magnetic
nanoparticles into the aqueous media. Moreover,
Figure 9 shows how the experimental Cole-Cole dia-
gram is described by the FMM. In this case, the the-

oretical curve describe quite well the experimental
data, indicating that the value of the fractional expo-
nent a was correctly estimated. The values of the pa-
rameters introduced to the FMM to describe this
system are also given in the Table I.

CONCLUSIONS

Using fractional calculus is possible to describe the
complex susceptibility of colloidal dispersions of
polymer-magnetic microspheres and also stabilized
nanometric-sized magnetic particles. The shape of
the theoretical curves of the real and imaginary parts

Figure 7 Comparison between the theoretical Cole-Cole
diagram predicted by the FMM (solid line) and the experi-
mental data (open circles) taken from a colloid dispersion
of polymer-magnetic microspheres.

TABLE I
Values of the Parameters Used to Evaluate the FMM

FMM
parameters

Magnetic systems

Polymer magnetic
microspheres

Stabilized
magnetite ferrofluid

a 0.02 0.40
v0 2.30 � 10�2 0.89
v1 1.00 � 10�3 0.11
s(s) 5.20 � 10�4 1.27 � 10�4

Figure 8 Comparison between the theoretical curves pre-
dicted by the FMM (solid line) and the experimental data
of the real (solid circles) and imaginary (open circles) parts
of the complex susceptibility taken from a magnetite aque-
ous ferrofluid.

Figure 9 Comparison between the theoretical Cole-Cole
diagram predicted by the FMM (solid line) and the experi-
mental data (open circles) taken from a magnetite aqueous
ferrofluid.
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can be modified changing the order of the fractional
derivate, between 0 and 1. The comparison between
the theoretical results obtained from the FMM and
those reported experimental data shows that the
FMM is capable to describe rotational diffusion fea-
tures associated to both polymer-magnetic micro-
spheres and magnetic nanoparticles dispersed into a
liquid media. Moreover, from the definition of this
new FMM we can establish that the order of the
fractional derivate could be considered as a relative
measure of the partial dissipated or storing magnetic
energy by the system.
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